首页 云计算

深度学习GPU最全对比,到底谁才是性价比之王?

搞AI,谁又没有“GPU之惑”?

张量核心、显存带宽、16位能力……各种纷繁复杂的GPU参数让人眼花缭乱,到底怎么选?

从不到1000元1050 Ti到近30000元的Titan V,GPU价格的跨度这么大,该从何价位下手?谁才是性价比之王?

让GPU执行不同的任务,最佳选择也随之变化,用于计算机视觉和做NLP就不太一样。

而且,用云端TPU、GPU行不行?和本地GPU在处理任务时应该如何分配,才能更省钱?

最合适的AI加速装备,究竟什么样?

现在,为了帮你找到最适合的装备,华盛顿大学的博士生Tim Dettmers将对比凝练成实用攻略,最新的模型和硬件也考虑在内。

到底谁能在众多GPU中脱颖而出?测评后马上揭晓。

文末还附有一份特别精简的GPU选购建议,欢迎对号入座。

最重要的参数

针对不同深度学习架构,GPU参数的选择优先级是不一样的,总体来说分两条路线:

卷积网络和Transformer:张量核心>FLOPs(每秒浮点运算次数)>显存带宽>16位浮点计算能力

循环神经网络:显存带宽>16位浮点计算能力>张量核心>FLOPs

这个排序背后有一套逻辑,下面将详细解释一下。

在说清楚哪个GPU参数对速度尤为重要之前,先看看两个最重要的张量运算:矩阵乘法和卷积。

举个栗子

官方微博/微信

每日头条、业界资讯、热点资讯、八卦爆料,全天跟踪微博播报。各种爆料、内幕、花边、资讯一网打尽。百万互联网粉丝互动参与,TechWeb官方微博期待您的关注。

↑扫描二维码

想在手机上看科技资讯和科技八卦吗?

想第一时间看独家爆料和深度报道吗?

请关注TechWeb官方微信公众帐号:

1.用手机扫左侧二维码;

2.在添加朋友里,搜索关注TechWeb。

手机游戏更多