用Python进行人脸识别「包括源代码」
Python可以从图像或视频中检测和识别你的脸。
人脸检测与识别是计算机视觉领域的研究热点之一。
人脸识别的应用包括人脸解锁、安全防护等,医生和医务人员利用人脸识别来获取病历和病史,更好地诊断疾病。
关于Python人脸识别
在这个python项目中,我们将构建一个机器学习模型,该模型从图像中识别人。我们在项目中使用了人脸识别API和OpenCV。
随时了解最新的技术趋势
加入DataFlair的电报!
工具与图书馆 Python-3.x CV2-4.5.2 矮胖-1.20.3 人脸识别-1.3.0
若要安装上述软件包,请使用以下命令。
pip install numpy opencv-python
要安装FaceRecognition,首先安装dlib包。
pip install dlib
现在,使用以下命令安装面部识别模块
pip install face_recognition
下载人脸识别Python代码
请下载python面部识别项目的源代码: 人脸识别工程代码
项目数据集
我们可以使用我们自己的数据集来完成这个人脸识别项目。对于这个项目,让我们以受欢迎的美国网络系列“老友记”为数据集。该数据集包含在面部识别项目代码中,您在上一节中下载了该代码。
建立人脸识别模型的步骤
在继续之前,让我们知道什么是人脸识别和检测。
人脸识别是从照片和视频帧中识别或验证一个人的脸的过程。
人脸检测是指在图像中定位和提取人脸(位置和大小)以供人脸检测算法使用的过程。
人脸识别方法用于定位图像中唯一指定的特征。在大多数情况下,面部图片已经被移除、裁剪、缩放和转换为灰度。人脸识别包括三个步骤:人脸检测、特征提取、人脸识别。
OpenCV是一个用C++编写的开源库.它包含了用于计算机视觉任务的各种算法和深度神经网络的实现。
1.准备数据集
创建2个目录,训练和测试。从互联网上为每个演员选择一个图片,并下载到我们的“火车”目录中。确保您所选择的图像能够很好地显示人脸的特征,以便对分类器进行分类。
为了测试模型,让我们拍摄一张包含所有强制转换的图片,并将其放到我们的“test”目录中。
为了您的舒适,我们增加了培训和测试数据与项目代码。
2.模型的训练
首先导入必要的模块。
import face_recognition as fr
import cv2
import numpy as np
import os
人脸识别库包含帮助人脸识别过程的各种实用程序的实现。
现在,创建2个列表来存储图像(人员)的名称及其各自的脸编码。
path = "./train/"
known_names = []
known_name_encodings = []
images = os.listdir(path)
人脸编码是一种值的矢量,它代表着脸部特征之间的重要度量,如眼睛之间的距离、额头的宽度等。
我们循环遍历火车目录中的每个图像,提取图像中的人的姓名,计算其脸编码向量,并将信息存储在相应的列表中。
for _ in images:
image = fr.load_image_file(path + _)
image_path = path + _
encoding = fr.face_encodings(image)[0]
known_name_encodings.append(encoding)
known_names.append(os.path.splitext(os.path.basename(image_path))[0].capitalize())
3.在测试数据集中测试模型
如前所述,我们的测试数据集只包含一个包含所有人员的图像。
使用CV2 imread()方法读取测试映像。
test_image = "./test/test.jpg"
image = cv2.imread(test_image)
人脸识别库提供了一种名为Face_Locations()的有用方法,它定位图像中检测到的每个人脸的坐标(左、下、右、上)。使用这些位置值,我们可以很容易地找到脸编码。
face_locations = fr.face_locations(image)
face_encodings = fr.face_encodings(image, face_locations)
我们循环遍历每个面部位置及其在图像中的编码。然后,我们将这种编码与“列车”数据集中的人脸编码进行比较。
然后计算人脸距离,即计算测试图像编码和训练图像编码之间的相似性。现在,我们从它选取最小值距离,表示测试图像的这张脸是训练数据集中的人之一。
现在,使用CV2模块中的方法绘制一个带有面部位置坐标的矩形。
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
matches = fr.compare_faces(known_name_encodings, face_encoding)
name = ""
face_distances = fr.face_distance(known_name_encodings, face_encoding)
best_match = np.argmin(face_distances)
if matches[best_match]:
name = known_names[best_match]
cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(image, (left, bottom - 15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
使用CV2模块的imShow()方法显示图像。
cv2.imshow("Result", image)
使用imwrite()方法将图像保存到当前工作目录中。
cv2.imwrite("./output.jpg", image)
释放未被释放的资源(如果有的话)。
cv2.waitKey(0)
cv2.destroyAllWindows()
Python人脸识别输出
让我们看看模型的输出。
您可能也感兴趣:
官方微博/微信

每日头条、业界资讯、热点资讯、八卦爆料,全天跟踪微博播报。各种爆料、内幕、花边、资讯一网打尽。百万互联网粉丝互动参与,TechWeb官方微博期待您的关注。

想在手机上看科技资讯和科技八卦吗?
想第一时间看独家爆料和深度报道吗?
请关注TechWeb官方微信公众帐号:
1.用手机扫左侧二维码;
2.在添加朋友里,搜索关注TechWeb。
为您推荐
去哪儿2023春节报告:出境机票同比增长6.7倍
2023春节档总票房破60亿 《满江红》领跑
马斯克预计特斯拉皮卡Cybertruck 2024年量产 晚于此前预期
交易量被指夸大6至10倍 满帮回应做空报告:与事实不符
特斯拉降价带动需求大增 马斯克:1月订单量超产量两倍
特斯拉第四季度营收243.18亿美元 汽车交付405278辆同比增长31%
理想L9车主爆料高速NOA辅助驾驶失效致车辆追尾 李想回应
法拉第未来FF 91正进行最后调试工作 未来将重点聚焦国内市场
亿纬锂能拟新建、扩产多个动力电池生产基地
更多
- 苹果首款AR/MR头显有望配备4K OLED屏幕 15套摄像头模组
- 玉晶光电将为苹果AR/VR头显供应镜头模块 最早下月开始出货
- 机构称三星电子去年仍是全球营收最高半导体供应商 但同比有下滑
- 机构预计去年全球半导体营收超过6000亿美元 但同比仅增长1.1%
- 韩媒:LG新能源计划在3年内开发出锂硫电池
- 推特经理:自马斯克接管以来 已有500多家广告商逃离推特
- 业内人士:台积电5/4nm工艺产能利用率在Q2可能降至70%以下
- 消息称Shein正洽谈融资至多30亿美元 公司估值缩水36%
- 特斯拉已成全球第9大最有价值品牌 TikTok/抖音紧随其后
- 亚马逊启动有史以来规模最大一轮裁员 预计波及全球1.8万名员工